skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shahar, Anat"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Copper shows limited isotopic variation in equilibrated mantle-derived silicate rocks, but large isotopic fractionation during kinetic processes. For example, lunar and terrestrial samples that have experienced evaporation were found to have an isotopic fractionation of up to 12.5‰ in their 65Cu/63Cu ratios, while komatiites, lherzolites, mid-ocean ridge and ocean island basalts show negligible Cu isotope fractionation as a result of equilibrium partial melting and crystal fractionation. The contrast between the observed magnitudes of equilibrium and kinetic isotope fractionation for Cu calls for a better understanding of kinetic Cu isotope fractionation. One of the mechanisms for creating large kinetic isotopic fractionation even at magmatic temperatures is diffusion. In this study, we performed Cu isotopic measurements on Cu diffusion couple experiments to constrain the beta factor for Cu isotopic fractionation by diffusion. We demonstrate a Monte Carlo approach for the regression and error estimation of the measured isotope profiles, which yielded beta values of 0.16 ± 0.03 and 0.18 ± 0.03 for the two experimental charges measured. Our results are subsequently applied to a quantitative model for the evaporation of a molten sphere to discuss the role of diffusion in affecting the bulk Cu isotopic fractionation between liquid and vapor during evaporation. We apply the model to Cu evaporation experiments and tektite data to show that convection primarily governs mass transport for evaporation during tektite formation. In addition, we show that Cu isotopes can be used as a tool to test the role of kinetics during various magmatic processes such as magmatic sulfide ore deposit formation, porphyry-type ore deposit formation, and fluid-rock interactions. 
    more » « less
  2. Abstract The interaction between nuclear receptor coactivator 4 (NCOA4) and the iron storage protein ferritin is a crucial component of cellular iron homeostasis. The binding of NCOA4 to the FTH1 subunits of ferritin initiates ferritinophagy—a ferritin-specific autophagic pathway leading to the release of the iron stored inside ferritin. The dysregulation of NCOA4 is associated with several diseases, including neurodegenerative disorders and cancer, highlighting the NCOA4-ferritin interface as a prime target for drug development. Here, we present the cryo-EM structure of the NCOA4-FTH1 interface, resolving 16 amino acids of NCOA4 that are crucial for the interaction. The characterization of mutants, designed to modulate the NCOA4–FTH1 interaction, is used to validate the significance of the different features of the binding site. Our results explain the role of the large solvent-exposed hydrophobic patch found on the surface of FTH1 and pave the way for the rational development of ferritinophagy modulators. 
    more » « less
  3. null (Ed.)
    Subducting tectonic plates carry water and other surficial components into Earth’s interior. Previous studies suggest that serpentinized peridotite is a key part of deep recycling, but this geochemical pathway has not been directly traced. Here, we report Fe-Ni–rich metallic inclusions in sublithospheric diamonds from a depth of 360 to 750 km with isotopically heavy iron (δ 56 Fe = 0.79 to 0.90‰) and unradiogenic osmium ( 187 Os/ 188 Os = 0.111). These iron values lie outside the range of known mantle compositions or expected reaction products at depth. This signature represents subducted iron from magnetite and/or Fe-Ni alloys precipitated during serpentinization of oceanic peridotite, a lithology known to carry unradiogenic osmium inherited from prior convection and melt depletion. These diamond-hosted inclusions trace serpentinite subduction into the mantle transition zone. We propose that iron-rich phases from serpentinite contribute a labile heavy iron component to the heterogeneous convecting mantle eventually sampled by oceanic basalts. 
    more » « less